[PDF] Deep Learning Notes FREE Download

Deep Learning Notes

Topics in our Deep Learning Notes PDF

In these “Deep Learning Notes PDF”, you will study the deep learning algorithms and their applications in order to solve real problems.

The topics we will cover will be taken from the following list:

Introduction: Historical context and motivation for deep learning; basic supervised classification task, optimizing logistic classifier using gradient descent, stochastic gradient descent, momentum, and adaptive sub-gradient method.

Neural Networks: Feedforward neural networks, deep networks, regularizing a deep network, model exploration, and hyper parameter tuning.

Convolution Neural Networks: Introduction to convolution neural networks: stacking, striding and pooling, applications like image, and text classification.

Sequence Modeling: Recurrent Nets: Unfolding computational graphs, recurrent neural networks (RNNs), bidirectional RNNs, encoder-decoder sequence to sequence architectures, deep recurrent networks, LSTM networks.

Autoencoders: Undercomplete autoencoders, regularized autoencoders, sparse autoencoders, denoising autoencoders, representational power, layer, size, and depth of autoencoders, stochastic encoders and decoders.

Structuring Machine Learning Projects: Orthogonalization, evaluation metrics, train/dev/test distributions, size of the dev and test sets, cleaning up incorrectly labeled data, bias and variance with mismatched data distributions, transfer learning, multi-task learning.


Download Deep Learning Notes PDF

Deep Learning Notes PDF

Deep Learning Notes PDF
Source: abc

Deep Learning Notes PDF

Deep Learning Notes PDF
Source: abc

Deep Learning Notes PDF

Deep Learning Notes PDF
Source: abc

Deep Learning Notes PDF

Deep Learning Notes PDF
Source: abc


More Computer Science Notes PDF
.