Handwritten Data Science Notes PDF Beginners FREE Download

Data Science Notes PDF

Topics in our Data Science Notes PDF

The topics we will cover in these Data Science Handwritten Notes PDF will be taken from the following list:

Introduction: Introduction to Data Science, Exploratory Data Analysis, and Data Science Process. The motivation for using Python for Data Analysis, Introduction of Python shell iPython, and Jupyter Notebook.

Essential Python Libraries: NumPy, pandas, matplotlib, SciPy, scikit-learn, statsmodels

Getting Started with Pandas: Arrays and vectorized computation, Introduction to pandas Data Structures, Essential Functionality, Summarizing, and Computing Descriptive Statistics. Data Loading, Storage, and File Formats. Reading and Writing Data in Text Format, Web Scraping, Binary Data Formats, Interacting with Web APIs, Interacting with Databases Data Cleaning and Preparation. Handling Missing Data, Data Transformation, String Manipulation

Data Wrangling: Hierarchical Indexing, Combining, and Merging Data Sets Reshaping and Pivoting.

Data Visualization matplotlib: Basics of matplotlib, plotting with pandas and seaborn, other python visualization tools

Data Aggregation and Group operations: Group by Mechanics, Data aggregation, General split-apply-combine, Pivot tables, and cross-tabulation

Time Series Data Analysis: Date and Time Data Types and Tools, Time series Basics, date Ranges, Frequencies and Shifting, Time Zone Handling, Periods, and Periods Arithmetic, Resampling and Frequency conversion, Moving Window Functions.

Advanced Pandas: Categorical Data, Advanced GroupBy Use, Techniques for Method Chaining

 

Download Data Science Notes PDF

Data Science Handwritten Notes PDF

Data Science Handwritten Notes PDF
Contributor: Kiritka
College: SGGSCC (DU)

Data Science Handwritten Notes PDF

Data Science Handwritten Notes PDF
Contributor: Gurleen
College: SGGSCC (DU)

Data Science Handwritten Notes PDF

Data Science Handwritten Notes PDF
Source: LectureNotesPDF.com

Data Science Handwritten Notes PDF

Data Science Handwritten Notes PDF
Source: nptel.ac.in

Data Science Handwritten Notes PDF

Data Science Handwritten Notes PDF
Source: iare.ac.in

Data Science Notes PDF

Data Science Handwritten Notes PDF
Source: iitk.ac.in

Data Science Notes PDF

Data Science Notes PDF
Source: iitd.ac.in

Data Science Notes PDF

Data Science Notes PDF
Source: iitkgp.ac.in

Data Science Handwritten Notes PDF

Data Science Notes PDF
Source: iitm.ac.in

Data Science Notes PDF

Data Science Notes PDF
Source: iitb.ac.in

Data Science Notes PDF

Data Science Notes PDF
Source: iitb.ac.in


Data Science Handwritten Notes PDF FAQs

What is Data ?

Measureable units of information gathered or captured from activity of people, places and things.

What is Data Science ?

Data science encapsulates the interdisciplinary activities required to create data-centric artifacts and applications that address specific scientific, socio-political, business or other questions.

What is the importance of Data Science ?

In a world that is increasingly becoming a digital space, organizations deal with zettabytes and yottabytes of structured and unstructured data every day. Evolving technologies have enabled cost savings and smarter storage spaces to store critical data.

What are the Applications of Data Science ?

The Top 10 Data Science Applications are as follows:

  1. Fraud and Risk Detection
  2. Healthcare
  3. Internet Search
  4. Targeted Advertising
  5. Website Recommendations
  6. Advanced Image Recognition
  7. Speech Recognition
  8. Airline Route Planning
  9. Gaming
  10. Augmented Reality

What are the components of Data Science?

Statistics: Statistics is the most critical unit in Data science. It is the method or science of collecting and analyzing numerical data in large quantities to get useful insights.
Visualization: Visualization technique helps you to access huge amounts of data in easy to understand and digestible visuals.
Machine Learning: Machine Learning explores the building and study of algorithms which learn to make predictions about unforeseen/future data.
Deep Learning: Deep Learning method is new machine learning research where the algorithm selects the analysis model to follow.


More Computer Science Notes PDF
.